Finite Plastic Deformation Due to Crystallographic Slip

G. Y. Chin, R. N. Thurston, and E. A. Nesbitt

A general relationship between the amount of glide shear (due to slip) and the macroscopic shape change has been developed. Since the deformation can be large, finite strain analysis is employed. In this treatment, the shape change is expressed by a deformation gradient matrix, $\mathrm{F} \equiv\left[\partial \mathrm{x}_{\mathrm{i}} / \partial \mathrm{X}_{\mathrm{j}}\right]$, where X and x refer to the initial and final positions of a particle. This matrix is readily evaluated in terms of the amount of glide shear, a , and the direction cosines of the slipplane normal and the slip direction for a single active slip system. In the case of deformation from slip on several systems, the product F (a) of the several deformation gradient matrices is first calculated. Then, by assuming that the final configuration is reached by a long series of small shears of magnitude a, occurring more or less alternately in the several slip sys-

IN problems of crystal plasticity, it is often necessary to relate the amount of glide in the operating slip systems to the macroscopic strain components. This relationship is relatively simple when only small strains are considered. ${ }^{1-2}$ In this case the separate strain contributions from several slip systems are additive. Such a procedure is incorrect in the case of large plastic deformation. To the authors' knowledge, no general treatment of the latter problem has appeared in the literature. In specific instances, Mark, Polanyi, and Schmid ${ }^{3}$ have derived the relationship between glide and axial elongation during tensile pulling of a single crystal when only one slip system is active. A similar relationship for duplex slip was worked out by v. Göler and Sachs. ${ }^{4}$ Taylor and Elam ${ }^{5}$ have also studied in detail problems of large plastic deformation. Due to uncertainties as to the slip systems at the time,

[^0]tems, the final deformation gradient matrix can be obtained. Mathematically, the problem is reduced to finding the limit of $\mathrm{F}(\mathrm{a})^{\mathrm{N}}$ as $\mathrm{N} \rightarrow \infty$ while $\mathrm{a} \rightarrow 0$ in such a way that the product $\mathrm{Na}=\alpha$, a finite constant designating the accumulated amount of shear. It turns out that this limit is simply $\mathrm{e}^{\alpha \mathrm{F}_{1}}$, where F_{1} is the matrix whose elements are the coefficients of a in the F (a) matrix. Application is made of the present treatment to a fcc crystal of Permalloy compressed on the (110) plane and contrained to elongate in the [ī12] direction. In addition, it is shown that one may readily obtain from the general analysis the wellknown formulas relating elongation, amount of glide shear, and amount of lattice rotation for crystals deforming by single and double slip under tension.
however, they were mainly concerned with proving that slip occurs on $\{111\}\langle 110\rangle$ systems in fcc metals.

The present general treatment arose out of recent investigations of magnetic anisotropy in cold-worked $\mathrm{Fe}-\mathrm{Ni}$ alloys ${ }^{6}$ as well as some related problems in strength anisotropy of single crystals. ${ }^{7}$ Detailed application of the general analysis will be provided in the case of a Permalloy single crystal compressed on the (110) plane and constrained to elongate only in the [112] direction. It will be seen that, as expected, the small strain approximation leads to significant errors after moderate straining. It will also be shown that the present general treatment yields the formulas of Mark et al. and of v . Göler and Sachs in those specific cases.

GENERAL CONSIDERA TIONS ${ }^{8}$

Consider a homogeneous deformation in which a material point initially at (X_{1}, X_{2}, X_{3}) moves to (x_{1}, x_{2}, x_{3}), both positions being referred to the same set of Cartesian axes. Such a deformation can be
specified completely by the deformation gradient matrix, F, of components $\partial x_{i} / \partial X_{j}$:

$$
F \equiv\left[\begin{array}{lll}
\frac{\partial x_{1}}{\partial X_{1}} & \frac{\partial x_{1}}{\partial X_{2}} & \frac{\partial x_{1}}{\partial X_{3}} \tag{1}\\
\frac{\partial x_{2}}{\partial X_{1}} & \frac{\partial x_{2}}{\partial X_{2}} & \frac{\partial x_{2}}{\partial X_{3}} \\
\frac{\partial x_{3}}{\partial X_{1}} & \frac{\partial x_{3}}{\partial X_{2}} & \frac{\partial x_{3}}{\partial X_{3}}
\end{array}\right]
$$

The displacement components are $u_{i}=x_{i}-X_{i}$, and hence the matrix [1] can be written in terms of the displacement derivatives by the substitutions

$$
\begin{equation*}
\frac{\partial x_{i}}{\partial X_{j}}=\delta_{i j}+\frac{\partial u_{i}}{\partial X_{j}} \tag{2}
\end{equation*}
$$

where $\delta_{i j}$ is the Kronecker delta.
In view of Eq. [2], the displacement derivatives and the small strain components

$$
\begin{equation*}
\epsilon_{i j}=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial X_{j}}+\frac{\partial u_{j}}{\partial X_{i}}\right) \tag{3}
\end{equation*}
$$

can readily be obtained from the matrix F.
Since the nine quantities $\partial x_{i} / \partial X_{j}$ specify the deformation completely, all quantities associated with the deformation can be derived from them. For example, the ratio of final volume to initial volume is the determinant of F :

$$
\begin{equation*}
\frac{V_{\text {final }}}{V_{\text {initial }}}=\operatorname{det} F \tag{4}
\end{equation*}
$$

The ratio, $\lambda_{\mathbf{p}}$, of final length to initial length for any material line can be found from

$$
\begin{equation*}
\lambda_{\mathbf{P}}^{2}=\sum_{i, j, k} \frac{\partial x_{i}}{\partial X_{j}} \frac{\partial x_{i}}{\partial X_{k}} P_{j} P_{k} \tag{5}
\end{equation*}
$$

where P is the unit vector giving the initial direction of the line. The unit vector p giving the final direction of the line (after the deformation) has the components

$$
\begin{equation*}
p_{i}=\frac{1}{\lambda_{\mathbf{P}}} \sum_{j} \frac{\partial x_{i}}{\partial X_{j}} P_{j}, \quad i=1,2,3 \tag{6}
\end{equation*}
$$

In general, the rotation of a material plane and the change in the perpendicular distance between parallel specimen faces is most conveniently expressed in terms of the quantities $\partial X_{i} / \partial x_{j}$, which may be obtained by inversion of the matrix F. The ratio $f_{\mathbf{Q}}$ of initial to final perpendicular distance between material planes of initial unit normal Q can be found from

$$
\begin{equation*}
f_{\mathbf{Q}}^{2}=\sum_{i, j, k} \frac{\partial X_{i}}{\partial x_{j}} \frac{\partial X_{k}}{\partial x_{j}} Q_{i} Q_{k} \tag{7}
\end{equation*}
$$

while the planes acquire the final unit normal q of components

$$
\begin{equation*}
q_{j}=\frac{1}{f_{\mathbf{Q}}} \sum_{i} Q_{i} \frac{\partial X_{i}}{\partial x_{j}} \tag{8}
\end{equation*}
$$

If the initial and final normal can be identified as the same material line, then $f_{\mathbf{Q}}=1 / \lambda_{\mathbf{Q}}$.

An important advantage of specifying a deformation by its deformation gradient matrix is that the matrix for the resultant of two or more successive deformations is the product of the matrices for the individual deformations. For example, consider two successive deformations such that the first moves points initially
at (X_{1}, X_{2}, X_{3}) to some intermediate configuration (y_{1}, y_{2}, y_{3}) specified by the deformation gradient matrix

$$
\begin{equation*}
F_{A}=\left[\frac{\partial y_{i}}{\partial X_{j}}\right] \tag{9}
\end{equation*}
$$

while the second deformation, from the intermediate configuration (y_{1}, y_{2}, y_{3}) to the final configuration (x_{1}, x_{2}, x_{3}), is specified by

$$
\begin{equation*}
F_{B}=\left[\frac{\partial x_{i}}{\partial y_{j}}\right] \tag{10}
\end{equation*}
$$

Since

$$
\frac{\partial x_{i}}{\partial X_{j}}=\sum_{k=1}^{3} \frac{\partial y_{k}}{\partial X_{j}} \frac{\partial x_{i}}{\partial y_{k}}
$$

the deformation gradient matrix for the resultant deformation from (X_{1}, X_{2}, X_{3}) to (x_{1}, x_{2}, x_{3}) is given by the matrix product $F_{B} F_{A}$, i.e.,

$$
\begin{equation*}
\left[\frac{\partial x_{i}}{\partial X_{j}}\right]=\left[\sum_{k=1}^{3} \frac{\partial x_{i}}{\partial y_{k}} \frac{\partial y_{k}}{\partial X_{j}}\right]=F_{B} F_{A} \tag{11}
\end{equation*}
$$

Finally, although we have no occasion to use them in the present paper, it may be noted that the finite strain components in the material (or Lagrangian) description are the elements of $(1 / 2)\left(F^{T} F-I\right)$ while the corresponding quantities in the spatial (Eulerian) description are the elements of $(1 / 2)\left[I-\left(F^{-1}\right)^{T} F^{-1}\right]$. Here I is the unit matrix and the superscript T denotes the transpose.

SINGLE SLIP

Consider a unit vector m (with components m_{1}, m_{2}, m_{3}) along the slip direction and a unit vector n (components n_{1}, n_{2}, n_{3}) normal to the slip plane. Then, with the origin considered a fixed point, we have

$$
\begin{equation*}
u_{i}=x_{i}-X_{i}=a(\mathrm{X} \cdot \mathrm{n}) m_{i} \quad i=1,2,3 \tag{12}
\end{equation*}
$$

where X is the position vector with components X_{i}, and a is the amount of simple shear resulting from slip. Upon noting that $\mathbf{X} \cdot \mathrm{n}=\sum_{j} X_{j} n_{j}$, we find, by differentiation of [12] in accordance with [2],

$$
\begin{equation*}
\frac{\partial x_{i}}{\partial X_{j}}=\delta_{i j}+a m_{i} n_{j} \tag{13}
\end{equation*}
$$

or

$$
F=\left[\begin{array}{ccc}
1+a m_{1} n_{1} & a m_{1} n_{2} & a m_{1} n_{3} \tag{14}\\
a m_{2} n_{1} & 1+a m_{2} n_{2} & a m_{2} n_{3} \\
a m_{3} n_{1} & a m_{3} n_{2} & 1+a m_{3} n_{3}
\end{array}\right]
$$

Eq. [14] can be written as

$$
\begin{equation*}
F=I+a m n^{T} \tag{14a}
\end{equation*}
$$

where m and n are the single-column matrices of direction cosines, and the superscript T denotes the transpose as before; i.e., n^{T} is a single-row matrix. Since the slip direction m lies in the slip plane, i.e., perpendicular to n , we always have $\mathrm{m} \cdot \mathrm{n}=0$. It follows that $\operatorname{det} F=1$, i.e., there is no volume change, and that F^{-1} for use in the general equations [7] and [8] is simply

$$
\begin{equation*}
F^{-1}=I-a m n^{T} \tag{14b}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{\partial X_{i}}{\partial x_{j}}=\delta_{i j}-a m_{i} n_{j} \tag{14c}
\end{equation*}
$$

If we take a Cartesian coordinate system with the normal n to the slip plane as axis 1 and the slip direction m as axis 2, the components of n are ($1,0,0$) and those of m are ($0,1,0$). Matrix [14] then becomes

$$
F=\left[\begin{array}{lll}
1 & 0 & 0 \tag{15}\\
a & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

With the deformation gradient matrix given by Eq. [15], Eq. [5] reduces to

$$
\begin{equation*}
\lambda_{\mathrm{P}}^{2}=\left(\frac{l_{1}}{l_{0}}\right)^{2}=1+a^{2} P_{1}^{2}+2 a P_{1} P_{2} \tag{16}
\end{equation*}
$$

while Eq. [6] yields

$$
\begin{align*}
& p_{1}=\frac{l_{0}}{l_{1}} P_{1} \tag{17a}\\
& p_{2}=\frac{l_{0}}{l_{1}}\left(a P_{1}+P_{2}\right) \tag{17b}\\
& p_{3}=\frac{l_{0}}{l_{1}} P_{3} \tag{17c}
\end{align*}
$$

Here P_{1}, P_{2}, and P_{3} are the direction cosines (with respect to the same coordinates as m and n above) of the initial direction of any arbitrary material line; p_{1}, p_{2}, and p_{3} are the corresponding values after the deformation; l_{1} / l_{0} is the ratio of final to initial length.

These formulas are applicable to tensile testing when the deformation corresponds to a single active slip system. The grip system maintains the direction of the material line along the tensile axis. This line, however, rotates with respect to the lattice, and hence with respect to our coordinate system which is fixed in the lattice. With P along the tensile axis, the above formulas enable one to find the length ratio l_{1} / l_{0} and the rotation of the tensile axis with respect to the lattice. The amount of shear, a, can be expressed in terms of the initial and final positions of the tensile axis by solving Eq. [17b] for a after substituting for l_{0} / l_{1} from [17a]. The result is

$$
\begin{equation*}
a=\frac{p_{2}}{p_{1}}-\frac{P_{2}}{P_{1}} \tag{18}
\end{equation*}
$$

Eqs. [16] to [18] have been derived previously by Mark, Polanyi, and Schmid. ${ }^{3}$

As a specific application, Fig. 1 shows a standard (001) stereographic projection. If the tensile axis P of a single-crystal rod lies anywhere within the standard [001]-[111]-[011] triangle, then according to the Schmid law the active slip system for a fcc crystal is (111)[$\overline{1} 01]$ (the primary slip system). It is convenient to use [111], [101], [1 $\overline{2} 1]$ as Cartesian coordinate axes, in which case the deformation gradient matrix is given by Eq. [15], and the remaining formulas [16] to [18] are directly applicable.

TWO OR MORE SLIP SYSTEMS

In extending the treatment to two (or more) slip systems A and B, we express the corresponding deformation gradient matrices (see Eq. [14a]) as

$$
\begin{align*}
& F_{A}=I+a m_{A} n_{A}^{T} \\
& F_{B}=I+b m_{B} n_{B}^{T}=I+\beta a m_{B} n_{B}^{T} \tag{19}
\end{align*}
$$

where $\beta=b / a$ is the ratio of glide-shear of the two slip systems. If shear in A is followed by shear in B, the deformation gradient matrix for the combination is

$$
\begin{align*}
F_{B} F_{A} & =I+a\left(m_{A} n_{A}^{T}+\beta m_{B} n_{B}^{T}\right)+a^{2} \beta\left(m_{B} n_{B}^{T} m_{A} n_{A}^{T}\right) \\
& =I+a F_{1}+a^{2} F_{2} \tag{20}
\end{align*}
$$

where $F_{1}=m_{A} n_{A}^{T}+\beta m_{B} n n_{B}^{T}$ and $F_{2}=\beta m_{B} n_{B}^{T} m_{A} n_{A}^{T}$. If shear in B is followed by shear in A, the combined result, given by $F_{A} F_{B}$, is the same except that F_{2} $=\beta m_{A} n_{A}^{T} m_{B} n_{B}^{T}$. Note in general $m_{A} n_{A}^{T} m_{B} n_{B}^{T}$ $\neq m_{B} n_{B}^{T} m_{A} n_{A}^{T}$ since this is a matrix product.

Physically, we imagine that the final configuration resulting from the operation of the two slip systems is reached by a long series of steps in which a small deformation F_{A} (or F_{B}) is followed by a small deformation F_{B} (or F_{A}). Thus, we expect to represent the final configuration mathematically by a deformation gradient matrix which is the limit of $\left(F_{B} F_{A}\right)^{N}$ as $N \rightarrow \infty$ while $a \rightarrow 0$ in such a way that the product $N a=\alpha$, a finite constant designating the accumulated amount of shear in slip system A. The desired limit is

$$
\begin{align*}
F & =\lim _{a \rightarrow 0}\left(F_{B} F_{A}\right)^{\alpha / a}=\lim _{a \rightarrow 0}\left(I+a F_{1}+a^{2} F_{2}\right)^{\alpha / a} \\
& =I+\alpha F_{1}+\frac{1}{2} \alpha^{2} F_{1}^{2}+\frac{1}{3!} \alpha^{3} F_{1}^{3}+\cdots \\
& =e^{\alpha F_{1}} \tag{21}
\end{align*}
$$

Since F_{2} does not enter the final result, $\left(F_{A} F_{B}\right)^{N}$ has the same limit. Thus, as expected, the final configuration is independent of the exact sequence of opera-

Fig. 1-Standard (001) stereographic projection for a cubic crystal. A single crystal whose tensile axis P lies inside the triangle deforms by (111)[$\overline{1} 01]$ (primary) slip. If tensile axis lies along the [001]-[111] line, equal slip on (111)[101] (primary) and (ī1)[011] (conjugate) results. Arrows indicate path of axial rotation.
tion of the two slip systems, in contrast to the result of a sequence of two finite shears. It can easily be shown that Eq. [21] is likewise applicable to more than two slip systems. The matrix F_{1} will in general take the form $F_{1}=m_{A} n_{A}^{T}+\beta m_{B} n_{B}^{T}+\gamma m_{C} n_{C}^{T}+\cdots$.

It remains now to evaluate the matrix $e^{\alpha F_{1}}$ of Eq. [21]. We first note that any similarity transformation that diagonalizes αF_{1} als o diagonalizes $e^{\alpha F_{1}}$. Let us suppose that a nonsingular matrix S has been found such that

$$
S\left(\alpha F_{1}\right) S^{-1}=\alpha\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \tag{22}\\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right] \equiv \alpha \Lambda
$$

Then,

$$
e^{\alpha \Lambda}=S\left(e^{\alpha F_{1}}\right) S^{-1}=\left[\begin{array}{ccc}
e^{\alpha \lambda_{1}} & 0 & 0 \tag{23}\\
0 & e^{\alpha \lambda_{2}} & 0 \\
0 & 0 & e^{\alpha \lambda_{3}}
\end{array}\right]
$$

and $e^{\alpha F_{1}}$ can be found from

$$
\begin{equation*}
e^{\alpha F_{1}}=S^{-1}\left[S\left(e^{\alpha F_{1}}\right) S^{-1}\right] S=S^{-1}\left(e^{\alpha \Lambda}\right) S \tag{24}
\end{equation*}
$$

This evaluation requires diagonalization of the matrix. E. N. Gilbert ${ }^{9}$ has shown us an elegant method, presented in the Appendix, of evaluating $e^{\alpha F_{1}}$ without diagonalization. The calculations will now be illustrated with the following deformation.

CASE OF (110)[112] COMPRESSION

Fig. 2 shows the standard (110) stereographic projection. If a fcc single crystal is compressed on the (110) plane and constrained to flow in the [112] direction (by confining the crystal to a channel), slip will occur equally in the two systems $A \equiv(111)[10 \overline{1}]$ and $B \equiv(11 \overline{1})[011]$ as a result of a favorable resolved shear stress on these systems. In evaluating m_{A}, m_{B},

Fig. 2-Standard (110) stereographic projection. For compression on (110) and elongation in [$\overline{\mathrm{I}} 12]$, the active slip systems are (11 $\overline{1})[011]$ and (111)[10 $\overline{1}]$.
and so forth, of Eq. [20], it is convenient to take the specimen axes as Cartesian coordinates, i.e., let X_{1}, X_{2}, X_{3} be respectively along [110], [$\left.\overline{1} 1 \overline{1}\right],[112]$, Fig. 2. The matrix of transformation from cubic axes to those above is

$[110]$	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	0
$[\overline{1} 1 \overline{1}]$	$-\frac{1}{\sqrt{3}}$	$\frac{1}{\sqrt{3}}$	$-\frac{1}{\sqrt{3}}$
$[\overline{1} 12]$	$-\frac{1}{\sqrt{6}}$	$\frac{1}{\sqrt{6}}$	$\frac{2}{\sqrt{6}}$

Hence, if $\mathbf{i}_{1}, \mathbf{i}_{2}, i_{3}$ are unit vectors along the specimen axes and I_{1}, I_{2}, I_{3} along the cubic axes, we have, for (111)[101] slip,

$$
\begin{align*}
& n_{A}=\frac{1}{\sqrt{3}}\left(I_{1}+I_{2}+I_{3}\right)=\frac{2}{\sqrt{6}} i_{1}-\frac{1}{3} i_{2}+\frac{\sqrt{2}}{3} i_{3} \\
& m_{A}=\frac{1}{\sqrt{2}}\left(I_{1}-I_{3}\right)=\frac{1}{2} i_{1}-\frac{\sqrt{3}}{2} i_{3} \tag{26}
\end{align*}
$$

and for (111̄)[011] slip,

$$
\begin{align*}
& n_{B}=\frac{2}{\sqrt{3}}\left(I_{1}+I_{2}-I_{3}\right)=\frac{2}{\sqrt{6}} i_{1}+\frac{1}{3} i_{2}-\frac{\sqrt{2}}{3} i_{3} \\
& m_{B}=\frac{1}{\sqrt{2}}\left(I_{2}+I_{3}\right)=\frac{1}{2} i_{1}+\frac{\sqrt{3}}{2} i_{3} \tag{27}
\end{align*}
$$

From Eqs. [14] and [26], we have

$$
F_{A}=\left[\begin{array}{ccc}
1-\frac{a}{\sqrt{6}} & \frac{a}{6} & -\frac{a}{3 \sqrt{2}} \tag{28}\\
0 & 1 & 0 \\
\frac{a}{\sqrt{2}} & -\frac{a}{2 \sqrt{3}} & 1+\frac{a}{\sqrt{6}}
\end{array}\right]
$$

where shear in the negative sense has been chosen to conform with compression along X_{1}.
Similarly, Eqs. [14] and [27] yield

$$
F_{B}=\left[\begin{array}{ccc}
1-\frac{b}{\sqrt{6}} & -\frac{b}{6} & \frac{b}{3 \sqrt{2}} \tag{29}\\
0 & 1 & 0 \\
-\frac{b}{\sqrt{2}} & -\frac{b}{2 \sqrt{3}} & 1+\frac{b}{\sqrt{6}}
\end{array}\right]
$$

Hence in the expected case of equal slip, $b=a$,

$$
F_{B} F_{A}=\left[\begin{array}{ccc}
1-\frac{2 a}{\sqrt{6}}+\frac{a^{2}}{3} & -\frac{a^{2}}{3 \sqrt{6}} & \frac{a^{2}}{3 \sqrt{3}} \tag{30}\\
0 & 1 & 0 \\
\frac{a^{2}}{\sqrt{3}} & -\frac{a}{\sqrt{3}}-\frac{a^{2}}{3 \sqrt{2}} & 1+\frac{2 a}{\sqrt{6}}+\frac{a^{2}}{3}
\end{array}\right]
$$

In the form of Eq. [20], $F_{B} F_{A}=I+a F_{1}+a^{2} F_{2}$,

$$
F_{1}=\left[\begin{array}{ccc}
-\frac{2}{\sqrt{6}} & 0 & 0 \\
0 & 0 & 0 \\
0 & -\frac{1}{\sqrt{3}} & \frac{2}{\sqrt{6}}
\end{array}\right]
$$

$$
F_{2}=\left[\begin{array}{ccc}
\frac{1}{3} & -\frac{1}{3 \sqrt{6}} & \frac{1}{3 \sqrt{3}} \tag{35}\\
0 & 0 & 0 \\
\frac{1}{\sqrt{3}} & -\frac{1}{3 \sqrt{2}} & \frac{1}{3}
\end{array}\right]
$$

$$
\begin{aligned}
\frac{l_{1}}{l_{0}} & =1+\varphi \\
\tan \theta_{32} & =-\frac{\sqrt{2}}{2} \varphi
\end{aligned}
$$

which may also be deduced from Eq. [34] for small values of φ. Clearly for large values of φ, Eq. [35] can be quite erroneous.

Experiment. A single crystal of Permalloy (4 pct Mo-17 pet $\mathrm{Fe}-79 \mathrm{pct} \mathrm{Ni}$) was compressed on the (110) plane with the elongation confined to the [112] direction. A special compression die was constructed to restrict lateral spreading of the specimen. As illustrated in Fig. 3, the die consists of a slot formed by three steel blocks bolted together to facilitate specimen removal. After the sample is placed in the slot a plunger is fitted on top and the ensemble placed in a Baldwin hydraulic machine for compression testing. Good lubrication was achieved with 5 -mil-thick Teflon strips. Periodically the sample was removed for dimensional measurement as well as for renewal of the Teflon. A more detailed description of the experiment is given in Ref. 7.

The specimen shape after a 50.5 pct reduction in height is shown in Fig. 4. Metallographic observations of the slip-line tracings indicate that slip had occurred primarily on the two expected systems (111)[101] and (111) [011], Fig. 5. From Eq. [34] one obtains

$$
\begin{equation*}
\tan \theta_{32}=\frac{1}{\sqrt{2}}\left(1-\frac{h_{0}}{h_{1}}\right) \tag{36}
\end{equation*}
$$

Fig. 3-Compression device for approximating constrained deformation.

Fig. 4-Top view of Permalloy single crystal compressed on (110) plane and elongated in [112] direction. Thickness reduction 50.5 pet. Initial rectangular shape has changed to a parallelogram. Directions noted in margins. X2.70. Reduced approximately 1 pet for reproduction.

Fig. 5-Slip traces on top surface of (110)[112] Permalloy crystal. Compressed 50.5 pct, electropolished, and then lightly compressed. Traces correspond to both (111) and (111̄) slip planes. X140. Reduced approximately 34 pct for reproduction.
and hence a plot of $\tan \theta_{32}$ vs $\left(1-h_{0} / h_{1}\right)$ should yield a straight line with a slope of 0.707 . This is shown in Fig. 6, together with the experimentally determined points. Agreement is considered very good. The slight positive deviation from the expected line can be explained on the basis of a small activity on the systems (111)[011] and (11 $\overline{1})[101]$; see Fig. 2. If lateral constraint had been absent, all four slip systems would have been equally favored. It can be shown that slip on (111)[01 $\overline{1}]$ and (11 $\overline{1})[101]$ systems will cause lateral spreading as well as contributing to a larger value of θ_{32}. The measured width of the sample was found to increase from 0.498 to 0.509 in . after 50.5 pct reduction, supporting the above rationale. A rough calculation indicates that the extra slip amounts to only 5 pet of the total.

It may be noted that the use of small strain equations [35] would have led to a value of $\tan \theta_{32}$ $=\left[\left(h_{1} / h_{0}\right)-1\right] / \sqrt{2}$. As shown in Fig. 6, this value errs by a factor of about two after 50 pet thickness reduction.

DOUBLE GLIDE IN TENSION-EQUAL PRIMARY AND CONJUGATE SLIP

The tensile axis of a single crystal which initially deforms by single slip generally rotates toward the slip direction until the [001]-[111] symmetry line is reached; see Fig. 1. Equal slip on both primary, (111) [101$]$, and conjugate, ($\overline{1} 11$)[011], systems will then rotate the tensile axis along the symmetry line toward the $[\overline{1} 12]$ final position. Since these slip systems are the same as those operated in the previous (110) [112] compression case, the same deformation gradient matrix [33] may be used. In the present case, however, the initial elongation direction is not at the [112] position, but instead at ϵ_{0} from it, say. We are interested in the relationship between tensile elongation, amount of glide, and lattice rotation as deformation proceeds by double glide.

Letting [110], $[\overline{1} 1 \overline{1}],[\overline{1} 12]$ be coordinate axes as before, the deformation gradient matrix from [33] is

$$
F=\left[\begin{array}{ccc}
e^{-\varphi} & 0 & 0 \\
0 & 1 & 0 \\
0 & \frac{1}{\sqrt{2}}\left(1-e^{\varphi}\right) & e^{\varphi}
\end{array}\right]
$$

Fig. 6-Plot of $\tan \theta_{32}$ vs ($1-h_{1} / h_{0}$) for (110)[112] compression. Straight line is according to theory, assuming only $(11 \overline{1})[011]$ and (111)[10 $\overline{1}]$ slip. Measured points from experiment on Permalloy single crystal. Size of square containing measured point indicates range of errors in measurement.

For a tensile axis initially at ϵ_{0} degrees from [112] and toward [001], the unit vector P along this axis is

$$
\begin{equation*}
\mathbf{P}=-\sin \epsilon_{0} \mathbf{i}_{2}+\cos \epsilon_{0} \mathbf{i}_{3} \tag{38}
\end{equation*}
$$

or

$$
P_{1}=0, \quad P_{2}=-\sin \epsilon_{0}, \quad P_{3}=\cos \epsilon_{0}
$$

Let the tensile axis move to a position $\epsilon_{1} \mathrm{deg}$ from [112] after the deformation with the line p along this axis being

$$
\begin{equation*}
\mathrm{p}=-\sin \epsilon_{1} \mathbf{i}_{2}+\cos \epsilon_{1} \mathbf{i}_{3} \tag{39}
\end{equation*}
$$

or

$$
p_{1}=0, \quad p_{2}=-\sin \epsilon_{1}, \quad p_{3}=\cos \epsilon_{1}
$$

From Eq. [6], which relates the direction cosines of the two lines, we have

$$
\lambda_{\mathrm{P}} p_{2}=\frac{\partial x_{2}}{\partial X_{1}} P_{1}+\frac{\partial x_{2}}{\partial X_{2}} P_{2}+\frac{\partial x_{2}}{\partial X_{3}} P_{3}
$$

or

$$
-\lambda_{\mathrm{P}} \sin \epsilon_{1}=-\sin \epsilon_{0}
$$

or

$$
\begin{equation*}
\lambda_{\mathrm{P}}=\frac{l_{1}}{l_{0}}=\frac{\sin \epsilon_{0}}{\sin \epsilon_{1}} \tag{40}
\end{equation*}
$$

Eq. [40], which relates the tensile elongation with the lattice rotation for a crystal undergoing double glide, was obtained by v. Göler and Sachs ${ }^{4}$ through the integration of a differential equation. From Eq. [6], we also have

$$
\lambda_{\mathrm{P}} p_{3}=\frac{\partial x_{3}}{\partial X_{1}} P_{1}+\frac{\partial x_{3}}{\partial X_{2}} P_{2}+\frac{\partial x_{3}}{\partial X_{3}} P_{3}
$$

or

$$
\lambda_{\mathrm{P}} \cos \epsilon_{1}=-\frac{1}{\sqrt{2}}\left(1-e^{\varphi}\right) \sin \epsilon_{0}+e^{\varphi} \cos \epsilon_{0}
$$

or

$$
\begin{equation*}
e^{\varphi}=\frac{\sqrt{2} \cot \epsilon_{1}+1}{\sqrt{2} \cot \epsilon_{0}+1} \tag{41}
\end{equation*}
$$

by substituting $\lambda_{\mathbf{P}}=\sin \epsilon_{0} / \sin \epsilon_{1}$. Eq. [41] may be rewritten as

$$
\begin{equation*}
S=2 \alpha=\sqrt{6} \varphi=\sqrt{6} \ln \left[\frac{\sqrt{2} \cot \epsilon_{1}+1}{\sqrt{2} \cot \epsilon_{0}+1}\right] \tag{42}
\end{equation*}
$$

which relates the amount of glide anci the lattice rotation for the double-glide case. Eq. [42] was likewise developed by v. Göler and Sachs. It may be noted if ϵ_{0} and ϵ_{1} are measured from $[\overline{112}]$ and toward the [111] position, Eq. [42] becomes

$$
S=\sqrt{6} \ln \left[\begin{array}{ll}
\frac{\sqrt{2}}{\sqrt{2}} \cot \epsilon_{1}-1 \tag{43}\\
\cot \epsilon_{0}-1
\end{array}\right]
$$

ACKNOWLEDGMENTS

The authors express sincere thanks to A. T. English, E. N. Gilbert, J. A. Lewis, and J. H. Wernick for valuable discussions during the course of the work. Experimental assistance from A. J. Williams and A. V. Rudzki are gratefully appreciated.

[^1]
APPENDIX ${ }^{9}$

ALTERNATIVE EVALUATION OF $e^{\alpha F_{1}}$ IN THE DOUBLE-GLIDE CASE

In Eq. [20], it is noted that

$$
\begin{equation*}
F_{1}=m_{A} n_{A}^{T}+\beta m_{B} n_{B}^{T} \tag{A.1}
\end{equation*}
$$

for slip on systems A and B. Let us define matrices

$$
\begin{equation*}
P=m_{A} n_{A}^{T}, \quad Q=m_{B} n_{B}^{T}, \quad R=m_{B} n_{A}^{T}, \quad S=m_{A} n_{B}^{T} \tag{A.2}
\end{equation*}
$$

and the scalar products

$$
\begin{equation*}
r=n_{A}^{T} m_{B}, \quad s=n_{B}^{T} m_{A} \tag{A.3}
\end{equation*}
$$

Since the slip directions m_{A} and m_{B} lie in the slip planes of normals n_{A} and n_{B}, respectively, we have

$$
\begin{equation*}
n_{A}^{T} m_{A}=n_{B}^{T} m_{B}=0 \tag{A.4}
\end{equation*}
$$

In view of the above definitions, the matrices P, Q, R, and S have the following multiplication table:

	Second Factor				
		P	Q	R	S
First	Q	$s R$	0	0	$s Q$
Factor	R	0	$r Q$	$r R$	0
	S	$s P$	0	0	$s S$

By application of this table, one finds

$$
\begin{aligned}
& F_{1}^{2}=(P+\beta Q)^{2}=P^{2}+\beta\left(Q P+P Q+\beta Q^{2}\right)=\beta(s R+r S) \\
& F_{1}^{3}=(P+\beta Q) \beta(s R+r S)= \beta(s P R+r P S) \\
&+\beta^{2}(s Q R+r Q S) \\
&= \beta r s(P+\beta Q)=\beta r s F_{1}
\end{aligned}
$$

It can be seen that each even power of F_{1} is a scalar multiple of the matrix F_{1}^{2}, which we denote by

$$
\begin{equation*}
B=F_{1}^{2}=\beta(s R+r S) \tag{A.6}
\end{equation*}
$$

while each odd power is a scalar multiple of F_{1} itself, since

$$
\begin{equation*}
B F_{1}=F_{1} B=\beta r s F_{1} \tag{A.7}
\end{equation*}
$$

Thus

$$
\begin{array}{ll}
F_{1}^{2}=B, & F_{1}^{3}=\beta r s F_{1} \\
F_{1}^{4}=B^{2}=\beta r s B, & F_{1}^{5}=(\beta r s)^{2} F_{1}, \text { and so forth } \tag{A.8}
\end{array}
$$

In general,

$$
\begin{align*}
& F_{1}^{2 k+1}=(\beta r s)^{k} F_{1} \\
& F_{1}^{2 k+2}=(\beta r s)^{k} B \tag{A.9}
\end{align*}
$$

Finally,

$$
\begin{align*}
e^{\alpha F_{1}}= & I+\sum_{k=0}^{\infty} \frac{\left(\alpha F_{1}\right)^{2 k+1}}{(2 k+1)!}+\sum_{k=0}^{\infty} \frac{\left(\alpha F_{1}\right)^{2 k+2}}{(2 k+2)!} \\
= & I+\frac{F_{1}}{\sqrt{\beta r s}} \sum_{k=0}^{\infty} \frac{(\alpha \sqrt{\beta r s})^{2 k+1}}{(2 k+1)!} \\
& +\frac{B}{\beta r s} \sum_{k=0}^{\infty} \frac{(\alpha \sqrt{\beta r s})^{2 k+2}}{(2 k+2)!} \\
= & I+\frac{F_{1}}{\sqrt{\beta r s}} \sinh (\alpha \sqrt{\beta r s})+\frac{F_{1}^{2}}{\beta r s}[\cosh (\alpha \sqrt{\beta r s})-1] \tag{A.10}
\end{align*}
$$

As a simple example, we reconsider the case of (110)[$\overline{1} 12$] compression, for which $e^{\alpha F_{1}}$ has already been evaluated in Eq. [33]. For this case, we have $\beta=1, r=s=(1 / 3) \sqrt{6}=2 / \sqrt{6}$, and F_{1} is given by Eq. [31]. Hence

$$
\frac{F_{1}}{\sqrt{\beta r s}}=\left[\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 0 & 0 \\
0 & -\frac{1}{\sqrt{2}} & 1
\end{array}\right], \frac{F_{1}^{2}}{\beta r s}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & -\frac{1}{\sqrt{2}} & 1
\end{array}\right]
$$

Substitution into Eq. [A.10] then gives, with $\varphi=2 a / \sqrt{6}$,

$$
\begin{aligned}
e^{\alpha F_{1}} & =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]+\left[\begin{array}{rcc}
-1 & 0 & 0 \\
0 & 0 & 0 \\
0 & -\frac{1}{\sqrt{2}} & 1
\end{array}\right] \sinh \varphi+\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & -\frac{1}{\sqrt{2}} & 1
\end{array}\right](\cosh \varphi-1) \\
& =\left[\begin{array}{ccc}
(\cosh \varphi-\sinh \varphi) & 0 & 0 \\
0 & 0 & 0 \\
0 & -\frac{1}{\sqrt{2}}(\cosh \varphi+\sinh \varphi-1) & (\cosh \varphi+\sinh \varphi)
\end{array}\right]=\left[\begin{array}{ccc}
e^{-\varphi} & 0 & 0 \\
0 & 1 & 0 \\
0 & \frac{1}{\sqrt{2}}\left(1-e^{\varphi}\right) & e^{\varphi}
\end{array}\right]
\end{aligned}
$$

in agreement with Eq. [33].

REFERENCES

${ }^{1}$ G. I. Taylor: S. Timoshenko 60th Anniversary Volume: Contributions to the Mechanics of Solids, pp. 218-224, MacMillan Co., New York, 1938.
${ }^{2}$ J. F. W. Bishop: Phil. Mag., 1953, vol. 44, pp. 51-64.
${ }^{3}$ H. Mark, M. Polanyi, and E. Schmid: Z. Physilk., 1922, vol. 12, pp. 58-77.
${ }^{4} \mathrm{v}$. Göler and G. Sachs: Z. Physik., 1927, vol. 41, pp. 103-15.
${ }^{5}$ G. I. Taylor and C. F. Elam: Proc. Roy. Soc. (London), Ser. A, 1923,
vol. 102, pp. 643-67.
${ }^{6}$ G. Y. Chin: J. Appl. Phys., 1965, vol. 36, pp. 2915-24.
${ }^{7}$ G. Y. Chin, E. A. Nesbitt, and A. J. Williams: to be published in Acta Met., 1965.
${ }^{8}$ For formulas in continuum mechanics, see, for example, C. Truesdell and R. Toupin: Handbuch der Physik, S. Flügge, ed., vol. III/1, pp. 226793, Springer-Verlag, Berlin, 1960; or R. N. Thurston: Physical Acoustics, W. P. Mason, ed., vol. 1, part A, pp. 1-110, Academic Press, New York, 1964.
${ }^{9}$ E. N. Gilbert: 1965, Bell Telephone Laboratories, Inc., Murray Hill, N. J.
${ }^{10}$ D. K. Bowen and J. W. Christian: Phil. Mag., 1965, vol. 12, pp. 369-78.
${ }^{11}$ M. Schubert: Ann. Physik, 1964, vol. 13, pp. 73-85.

[^0]: G. Y. CHIN, Junior Member AIME, R. N. THURSTON, and
 E. A. NESBITT are Members of Technical Staff, Bell Telephone Laboratories, Murray Hill, N.J.

 Manuscript submitted July 12, 1965. IMD

[^1]: *Note added in proof: After the present work was submitted for publication, two related papers, by Bowen and Christian ${ }^{10}$ and by Schubert, ${ }^{11}$ have come to our attention. The Bowen and Christian treatment of single glide is essentially the same as ours. Their results for double glide, like those of v. Göler and Sachs, were obtained by integrating a differential equation. The latter method was also used by Schubert in treating both single and double glide. On the other hand, we obtained, directly from the limit in Eq.[21], the resultant deformation gradient matrix, from which all quantities associated with the deformation can be computed readily.

